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Abstract 

 

Real-life engagement monitoring is crucial in many clinical and therapy applications such as 

classroom activities of children with developmental delays including autism spectrum 

disorder, attention-deficit hyperactivity disorder (ADHD), Down syndrome, or cerebral 

palsy. Generally, the prefrontal cortex of the human brain shows increased neuronal activities 

during attentive tasks, which can be monitored non-invasively with electroencephalogram 

(EEG) recordings. For real-life engagement monitoring, we have developed a custom 

hardware-software embedded system, the “NeuroMonitor.” The hardware is designed on a 

small 11.35 cm
2
 4-layer PCB containing a programmable system-on-a-chip (PSoC 3) 

microcontroller, an analog front end for 2-channel bipolar or referential montage EEG data 

collection, and a dual Bluetooth and microSD card digital back end. The AFE contains a low-

power instrumentation amplifier, followed by a notch filter (fcn = 60 Hz), and a band-pass 

filter composed of a 2nd-order Chebyshev-I active low-pass filter cascaded with a 2nd order 

low-pass filter (fcl = 125 Hz), followed by a 1st order high-pass filter (fch = 0.5Hz). PSoC’s 

integrated ADC (16-bit, 256 sps) samples this filtered signal with a mutex dual-buffer.  

 

The system can operate either in offline mode, to store the collected data in the onboard 

microSD card, or online mode, to wirelessly transmit the data through the Bluetooth module 

at a baud rate of 115.2 kbps. The hardware weighs only 41.8 gm with an 800 mAh Li-Poly 

battery and snap leads. The active mode power consumption of the NeuroMonitor device is 

32 mA, which can be optimized with dynamic frequency shifting (DFS) technique for over 

90 hours of continuous operation on a single charge. A GUI allows initialization of the 

system through a micro-USB port or Bluetooth, also used to recharge the battery through a 
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power management chip. NeuroMonitor platform is deployable in real-life settings to 

monitor brain activities at two sites of the prefrontal cortex during daily activities. 

 

Introduction 

 

The human brain consists of billions of neurons that store and transmit massive amount of 

information through electrochemical processes [1]. These activities, when converted to 

electrical signals at cellular level, are known as action potentials. Extracellular matrix records 

simultaneous neuronal activities as local field potential and neuronal spiking activities. On 

the dura matter, these signals are recorded as electrocorticography signals. Noninvasively, 

these electrical signals can be recorded by placing electroencephalography (EEG) sensors at 

the scalp, using non-contact approach through magnetoencephalography (MEG), or using 

functional magnetic resonance imaging (fMRI) [2]. These non-contact technologies, 

however, require setup or equipment that is not suitable for the use of beyond clinical settings 

due to weight and restriction on subject movements. For instance, fMRI requires equipment 

to generate extremely high magnetic field strengths (typically 1.5 to 3 Tesla), and MEG 

requires highly sensitive magnetic sensors (e.g., a superconducting quantum interference 

device) [3]. MRI is an indirect measure of neuronal activities as it depends on blood oxygen 

level dependent imaging. Positron emission tomography of brain imaging requires the 

introduction of a radionuclide tracer on a biologically active molecule inside the body, and 3-

dimensional imaging is reconstructed from a pair of emitted gamma rays indirectly by 

positron emitting. 

 

Non-invasively collected scalp EEG signals are predominantly oscillatory wave activities 

that relate to mental states, massive synchronous neuro-stimulations and activities of various 

brain lobes [4]. EEG signals are typically classified as delta (0.1-3.5 Hz), theta (4-7.5 Hz), 

alpha (8-13 Hz), beta (14-30 Hz), and gamma (>30 Hz) rhythms. A copious amount of 

research have conclusively related various brain lobes responsible for specific cognitive 

activities, enabling EEG analysis as an efficacious modality for various types of studies in 

neuroscience, cognitive science and psychology [2,5]. For instance, the frontal lobe is 

associated with problem solving, mental flexibility, judgment, creativity, foresightedness, 

and deficiencies, whereas the temporal lobe is primarily responsible for auditory sensation, 

perception, language comprehension, long-term memory, and sexual behavior [6]. EEG 

signals have been analyzed to assess the mental states and neuronal activities of neurological 

disorder patients [7, 8]. 

 

Embedded system (ES) technology consists of hardware, software, and an environment 

encountering physical constraints and execution constraints that have to be dealt with by 

hardware-software co-design [9-11]. The device is developed with state-of-the-art ES 

technology that can be combined with body sensor network (BSN) or body area network 

(BAN), consisting of other sensors for multimodal physiological signal recording to provide 

a context-aware perception with increased specificity and reliability [12]. In conjunction with 

BSN or BAN, the device can be used for long duration unsupervised monitoring of patients 

with real-time feedback for many neurological episodes. It can also be clinically important 

for patient welfare and beneficial for their care providers (e.g., neurologists or clinician) by 

improving diagnosis, prognosis, and treatment efficacy. 
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Most of the commercially available wireless EEG data capture systems contain a large 

number of multichannel electrodes [4]. While these are excellent choices to provide the 

complete brain imaging and activity data of various lobes, these are rarely practical to be 

deployed for daily activity monitoring in natural settings due to obtrusiveness of the large 

wired device. Recently, there are devices developed that provide a smaller number of 

electrodes within a fashionable framework that could lead to data collection from real-life 

settings. The 14-channel EPOC and Insight neuro-headsets (from Emotiv) connect wirelessly 

to a computer using USB receivers and can provide access to raw EEG data for ~12 hours 

[13]. B-Alert X4 has a 4-channel EEG system with BT and SD card storage and is attached to 

the head with a harness [14]. The first FDA-approved, single-channel EEG recording device, 

iBrain, is small and portable, attached to an elastic head harness [15]. Other examples of 

single-channel EEG systems are MindWave, ThinkGear and MindSet from NeuroSky [16].  

 

Other commercial wireless EEG acquisition systems include Biosemi, Enbio, Starstim, 

g.NAUTIUS, Imec, BioExplorer pendent, Ez-Air Light, FlexComp Infinity, MyoTrac 

Inifinity, Muse headset from Interaxon Inc, BrainWave, iFocusBand from Green Pty Ltd, 

Mindflex from Mattel, Neural Impulse Actuator from OCZ Technologies, Mindball rom 

Interactive Productline, BrainScope headset from BrainScope, and XWave headset and Sonic 

from PLX Devices [17-19]. Furthermore, many research articles have presented various 

types of EEG systems and sensors including ModularEEG from OpenEEG project and 

OpenBCI from OpenBCI project [20-24]. Many wireless EEG-based medical devices have 

demonstrated effective data collection and analysis [23-26].  

 

None of the available devices would fit the subject group of our study, children with 

developmental delays between two to three years of age. Our research group was uniquely 

positioned to develop a hardware-software co-designed ambulatory EEG monitoring 

platform. The prototype has been developed, evaluated, optimized, and demonstrated over 

the last two years by the research team [27-32]. The system has been deployed to monitor 

classroom activities; however, it has the potential to be applied to many other neurological 

disorder patient monitoring such as autism spectrum disorder, attention-deficit hyperactivity 

disorder (ADHD), epilepsy, Alzheimer’s, and post-traumatic stress disorder patients. 

 

System Description 

 

Embedded Hardware 

 
We have developed a framework using a hardware-software co-design approach. This 

ambulatory scalp EEG data collection device, named “NeuroMonitor,” can record 2-channel 

bipolar or referential montage EEG data in a real-world setting. EEG signals at the scalp are 

roughly less than 100 µV and 100 Hz, which necessitate extremely low-noise amplification 

and high input impedance amplifier. To collect EEG data from the prefrontal cortex (such as 

Fp1, Fp2 or AF3, AF4 locations of Intl. 10-20 electrode systems) of the subjects, we have 

used a commercial EEG/EMG sensor (GS26, Bio-Medical Instruments, Warren, MI). This 

disposable sensor contains a 0.5 percent saline base gel on a 10 mm flat pellet Ag/AgCl 

electrode surrounded by a paper-thin transparent self-adhesive tape disc of 1-inch diameter. 
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On the back of the electrode, 

In a minimalistic configuration, 

used for ECG. 

 

Figure 1 depicts the NeuroMonitor prototype board with battery and EEG sensors

analog front end (AFE) was designed with a differential amplifier configuration with ground 

terminal and reference terminal to bias to body potential

to various noise and artifacts including utility line interference (60 Hz)

differential mode interference

artifacts, muscle artifact, heart beat related artifacts, and 

the AFE consists of a low noise

Americas, Palm Bay, FL) and a

60 Hz), implemented with a MCP6002

followed by a band-pass filter (

Chebyshev-I low pass filter, a 

passive filter. The signal is bias

total of 72 dB amplification. 

data. To do so, AFE component

Hz to 126 Hz, with a gain of 

 

Figure 1. A photograph of the prototype

disposable EEG/EMG sensors and a rechargeable LiPoly battery

is capable of recording 2-channel bipolar or referential montage EEG/ECG data and 

transmitting the buffered data wirelessly through the onboard BT module.

 

Two channel signals are then

Delta-Sigma ADC sampling 

each channel are housed within a low

footprint (PSoC 3 is from Cypress Semiconductor Corp.,

contains a VDD and a GND layers

and digital planes are connected
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, a snap lead connects to the sensor to the NeuroMonitor device.

In a minimalistic configuration, 4-electrode system is used for EEG and 3-electrode system is 

NeuroMonitor prototype board with battery and EEG sensors

analog front end (AFE) was designed with a differential amplifier configuration with ground 

terminal and reference terminal to bias to body potential as in [33]. EEG signals are subjected 

rious noise and artifacts including utility line interference (60 Hz), common

interference, thermal noise and shot noise of components, eye blink related 

artifacts, muscle artifact, heart beat related artifacts, and so forth. To minimize these noises, 

low noise differential instrument amplifier (ISL28270, Intersil 

and a 3-stage bio-potential scheme with an active notch filter (

MCP6002 op-amp (Microchip Technologies Inc.,

pass filter (fcl = 0.5 to fch = 125 Hz) realized by concatenating

I low pass filter, a 2nd order low pass passive filter, and a 1st order high pass 

ignal is biased and passed through a final amplification stage

 The AFE can be modified to capture electrocardiogram (ECG) 

component values are altered to achieve a band pass filter cutoff of 0.5 

 39.45 dB. 

 
 

graph of the prototype NueroMonitor device (rev. 3) connected to four

disposable EEG/EMG sensors and a rechargeable LiPoly battery, beside a ruler. The device 

channel bipolar or referential montage EEG/ECG data and 

the buffered data wirelessly through the onboard BT module. 

then digitized through an analog multiplexer followed by a 16

 the analog data at 256 sps. The ADC and the last 

within a low-power PSoC microcontroller to reduce the required 

Cypress Semiconductor Corp., San Jose, CA). The

layers as middle layers, where the GND is separated in analog 

connected at the ADC. The PCB also contains a microSD 

 

the NeuroMonitor device. 

electrode system is 

NeuroMonitor prototype board with battery and EEG sensors. The 

analog front end (AFE) was designed with a differential amplifier configuration with ground 
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Technologies Inc., Chandler, AZ) 
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 order 

order high pass 
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followed by a 16-bit 
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to reduce the required 
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at the bottom layer, and a Class 2 Bluetooth (BT) wireless communication module (RN-42, 

Roving Networks, Los Gatos, CA) at the top layer. The device is powered by a rechargeable 

800 mAh Li-Poly battery with nominal voltage of 3.7 V (All-Battery.com). The battery 

recharges through a power management controller chip MCP73831 (Microchip Technology, 

AZ) from a microUSB. The port also allows data communication to a computer for 

configuration and mode selection. The size of NeuroMonitor is 2.2˝×0.8˝×0.36˝, and it 

weighs only 41.8 gm. The device can be easily concealed inside a wearable accessory, such 

as a headband or a baseball cap.  

 

Embedded Firmware 

 
The embedded firmware was written in C using PSOC Creator IDE software (Cypress 

Semiconductor Corp., San Jose, CA). The microcontroller was programmed with MiniProg 3 

through JTAG port. In online mode, the device communicates with a remote computer 

through the BT module in serial port profile at a baud rate of 115.2 kbps to an external device 

(e.g., a smartphone or a laptop). In offline mode, data are stored in the onboard microSD card 

for offline data storage for later analysis. 

 

The embedded firmware implements a mutex duel buffer for continuous sampling, ensuring 

data integrity. The analog signal sampling is achieved at the ADC, triggered by a timer-

driven interrupt at 3.9 ms interval (256 sps). The sampled 16-bit data from both channels are 

placed in one of the buffer using the Interrupt Service Routine. When the buffer is full, a flag 

is set to use the other buffer for subsequent samples. In the meantime, the full buffer data are 

appended with a header containing information on type and serial number of the packet, and 

then transmitted wirelessly through the BT via a universal asynchronous receiver/transmitter 

port (online mode). The sniff mode of BT is set at 100 µs. The firmware can be enhanced by 

transmitting timestamps, which can be realized by synchronizing the onboard real time clock 

with the remote computer. Furthermore, power consumption can be improved with direct 

memory access (DMA) and dynamic clocking for power minimization.  

 

Interfacing Software 

 

The GUI was programmed with Visual Basic (version 2010, Microsoft Corp., WA), then 

later ported to MATLAB (Mathworks Inc. Natick, MA) that can initialize the NeuroMonitor 

device and configure online or offline mode. The online mode data are received with the 

MATLAB interface that allows real time monitoring of sequential reception of all packets; 

otherwise, it generates an error message. Also, the real-time program arranges the upper and 

lower bytes of the received data to form the 16-bit integer and saves each channel in a vector. 

A third vector stores metadata such as packet number. A user clickable marker provision is 

also implemented that allows insertion of marker points in the third vector to correlate the 

raw EEG data with the noted events during data collection. 
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Functional Verification 

 

The NeuroMonitor device is 

using the NeuroMonitor device from r

and 3. The data were collected in online mode 

data from Fp1 location of a subject was collected when the subject was frowning and f

sequential eye-blinking. Muscle artifacts from frowning and eye

recognizable in the raw data as these artifacts have more than 1 order of amplitude. 

artifacts were later removed by denoising algorithm such as wavelet

component analysis technique

compared with a clinically approved

(Compumedics Sleep, Charlotte

(AF4 of Intl. 10-20 electrode systems)

relaxed state inside a magnetically shielded room

NeuroMonitor and NeuroScan raw 

sensitivity, higher noise, and higher amplification. 

Figure 2. Raw data collected with 

of brain signals (EEG data) with artifactual components (such as f

eyes). These raw data are

denoised further to obtain clean EEG data
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NeuroMonitor device is functionally verified by a number of experiments. 

NeuroMonitor device from representative experiments are included in 

The data were collected in online mode through the BT interface. In Figure

from Fp1 location of a subject was collected when the subject was frowning and f

Muscle artifacts from frowning and eye-blinking are readily 

recognizable in the raw data as these artifacts have more than 1 order of amplitude. 

artifacts were later removed by denoising algorithm such as wavelet-enhanced

ue. In Figure 3, the raw data with our NeuroMonitor 

clinically approved 64-channel NeuroScan EEG data collection device 

ics Sleep, Charlotte, NC) by simultaneous data collection from the same 

20 electrode systems) with minimal spatial separation from 

a magnetically shielded room. The data show correlation of the 

NeuroMonitor and NeuroScan raw data, while the NeuroMonitor device shows more 

and higher amplification.  

 

 
 

Raw data collected with NeuroMonitor device. The data are superimposition

of brain signals (EEG data) with artifactual components (such as frowning or blinking of 

are analyzed with MATLAB software to remove the artifacts

denoised further to obtain clean EEG data. 

 

a number of experiments. Raw data 

epresentative experiments are included in Figures 2 

Figure 2, the raw 

from Fp1 location of a subject was collected when the subject was frowning and four 

blinking are readily 

recognizable in the raw data as these artifacts have more than 1 order of amplitude. These 

enhanced independent 

3, the raw data with our NeuroMonitor device is 

EEG data collection device 

by simultaneous data collection from the same site 

a subject in 

correlation of the 

data, while the NeuroMonitor device shows more 

superimpositions 

rowning or blinking of 

software to remove the artifacts and 
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Figure 3. Comparison data of the NeuroMonitor device with a clinically approved EEG 

system (NeuroScan) for the same channel of data (minimal spatial gap). The plot shows 

the sensitivity of the NeuroMonitor device is higher compared to that of the NeuroScan 

system. 

 

As wearable embedded devices, such as the ambulatory NeuroMonitor EEG device, operate 

with a small rechargeable battery, portability and power consumptions are critical 

constraints. For power optimization, various approaches can be used such as dynamic voltage 

scaling, and dynamic frequency scaling (DFS). A DFS approach involves the microcontroller 

operating at a low-power mode of nominal clock frequency (NF) when idle, then 

dynamically stepping up to a higher clock frequency (SUF) when tasks arrive for processing. 

After the task is complete, the CPU falls back to the low-power mode. Figure 4 shows a plot 

demonstrating power saving with various SUF and NF. The device consumes 32 mA while 

active in online mode. Without the BT power consumption, the power consumption was 

optimized to 5.24 mA using the DFS technique. On-going power optimization testing 

indicates that by using DMA and a revised firmware architecture, the power consumption can 

even be lowered (3.5 mA). With optimized power consumption, the device could operate 

continuously for over 90 hours with an 800 mAh battery in a single charge. 
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Figure 4. Power optimization with

consumption relate to when the CPU switches to a SUF for performing some task 

(e.g., fetching data from ADC to buffer), and the flat regions relate to current 

consumptions for NF.

 

Applications 

 

We have deployed the NeuroMonitor device for real

developmental delays at Special Kids and Families (SKF

Memphis. A representative plot is shown in 

classroom activities with the device worn inside a baseball cap

mode. The data can be subjected to various classification approaches to identify events of 

interest. In this example, cognitive load index

different rhythms. It has been shown that beta rhythm power intensifies

density, PSD) with attention, while th

defined as, 
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Prolonged duration and personalized monitoring of patients with neurological disorders (such 

as symptomatic or cryptogenic

and aligns well with the national priorities. A product with such capabilities and usability 

will, in addition to epilepsy patient monitoring outside clinical settings, also find applications 

to other neurological disorder patients. Similar monitoring ca
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memory load and cognitive stress by detecting corresponding events of inter
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consumption relate to when the CPU switches to a SUF for performing some task 

fetching data from ADC to buffer), and the flat regions relate to current 

umptions for NF. 

We have deployed the NeuroMonitor device for real-life data collection of children with 

developmental delays at Special Kids and Families (SKF), a non-profit organization in 

A representative plot is shown in Figure 5, where the subject was responding to 

classroom activities with the device worn inside a baseball cap and data collected with online 
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t has been shown that beta rhythm power intensifies (i.e.,

with attention, while that of alpha and theta decreases. Hence, 

��� 	
����

���� 
 ����
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Prolonged duration and personalized monitoring of patients with neurological disorders (such 

as symptomatic or cryptogenic epilepsy) will significantly enhance efficacy of patient care 

and aligns well with the national priorities. A product with such capabilities and usability 

will, in addition to epilepsy patient monitoring outside clinical settings, also find applications 

o other neurological disorder patients. Similar monitoring can be beneficial to Alzheimer’s

autism spectrum disorder, and ADHD patients, as well as for assessment of working 

memory load and cognitive stress by detecting corresponding events of interest (noteworthy 
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Figure 5. Data collected form a subject at SKF in classroom settings (left) and 

corresponding engagement metric computed through the analysis software for 

engagement study (right). The CLI indicates engagement (E) and disengagement (D) 

during classroom instruction. 

 

Conclusions 

 

Neuronal activity monitoring in real-life settings over long periods is of significant medical need 

and technological challenge to improve diagnosis, prognosis, and efficacy of treatment, as well 

as reduce healthcare cost with a transformative patient-centric care paradigm. As a practical 

framework, we have developed NeuroMonitor device with key features including small size and 

weight, concealable within a baseball cap or a headband, 2-channel bipolar or referential 

montage EEG or ECG data collection at real-life settings, two modes of operation (online and 

offline), and a low power consumption of 32 mA in active online mode, which was optimized to 

5.24 mA using DFS (without the BT power consumption). It is estimated that an 800 mAh 

battery should be able to operate it continuously for over 90 hours. The NeuroMonitor EEG 

device is readily deployable in real-life settings to allow the subject to perform routine activities 

without distractions while monitoring cognitive activities or episodes of interest for patients with 

neurological disorders. 
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